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High Control of the Regiochemistry in Reactions of 
Heterosubstituted Allylic Carbanions via Allylic 
Aluminum “Ate” Complexes 

Summary: The regiochemistry in reactions of heterosub- 
stituted allylic carbanions is highly controlled via allylic 
aluminum “ate” complexes which direct both carbonyl 
compounds and reactive halides to the a position with 
exceptionally high regioselectivity. 

Sir: The regiochemistry of reactions of heterosubstituted 
allylic carbanions depends upon too many factors,’ and 
development of a new methodology to control the regio- 
chemistry with a predictable value is highly desirable from 
both practical and theoretical angles. For example, the 
alkoxy derivative 1 generally reacts with alkyl halides a t  
the y position and carbonyl compounds at  the a position, 
while the reaction of the alkylthio derivative 2 takes an 
entirely opposite direction under the normal conditions.z 

1 2 

We report a new and convenient procedure for controlling 
the regiochemistry via allylic aluminum “ate” complexes 
3 which direct both carbonyl compounds and reactive 

halides to the a position with exceptionally high regiose- 
lectivity regardless of the nature of the substituent (RO 
or RS) (eq 1). Such an independence from both substrate 
and reagent electronic factors is totally unprecedented in 
allyl anion chemistry. 

3 X = R O o r R S  

x++ E (1) 

E is a carbonyl 
compound o r  

reactive halide 

We recently reported that the regiocontrolled coupling 
between the allyloxy carbanion 1 and prenyl bromide is 
realized via the allyloxy carbanion-boron “ate” ~ o m p l e x . ~  
Unfortunately, however, an application of the “ate” com- 
plex to carbonyl derivatives gave a poor result and similar 
application of (alky1thio)allyl carbanion-boron “ate” com- 
plexes was limited to only a few reactions.* The difficulty 
appeared largely steric in origin and appeared to lie in the 
reaction step of the “ate” complex rather than its forma- 
tion step. Use of allylic aluminum “ate” complexes seemed 
to provide a solution to this problem, since the longer C-A1 
bond should exert less steric hindrance and the more ionic 

Table I. Reaction of Heterosubstituted Allylic Carbanions with Electrophiles via 3” 
allylic carbanion electrophile additiveb a attack,c % y attack,c % total yield,d 76 

2 ( R  = i-Pr) 

1 ( R  = i-Pr) benzaldehyde Et,A1 > 9 9  < 1  81 (95)  

cyclohexanone Et,A1 - 100 7 4  ( 9 2 )  
Et,B NRe 

crotonaldehyde Et,A1 - 100 7 I f  
none 60 40 7 4  

prenyl chloride Et,Al 80 20 (80) 
Et,B 6 1  39 low 

n-but yraldehyde Et,Al 9 5  5 7 7  ( 9 2 )  
none 4 3  57 (80) 

cyclohexanone Et,Al 92 8 77 

acetophenone Et,A1 9 5  5 7 4  (90)  
Et,B 45 5 5  (82)  
none 29 7 1  (85)  

crotonaldehy de Et,A1 9 4  6 77f 
none 35  65 7 5  

crotyl chloride Et,A1 9 9g 1 78  

none 28 72  (95)  

isobutyraldehyde Et,AI 99 1 7 5  ( 9 2 )  

2-octanone Et,A1 9 4  6 76 

a All reactions were carried out  o n  a 1-mmol scale with the  same procedure as described in the  text. The products were 

Isolated yield. e The coupling products were not  
identified by NMR, IR, and mass spectroscopy, elemental analysis, or  comparison with authentic materials. 
cates t h e  normal reaction without t h e  additives. 
detected. f The 1,4-addition product was not obtained and the geometrical integrity of the  crotyl unit was retained. 
g Contaminated with small amounts  of the  a,u’-coupling p r ~ d u c t . ~  

“None” indi- 
By GLC analysis. 
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nature of the C-A1 bond should facilitate the coupling 
 reaction^.^ Indeed, this proved to be practical, and the 
predominant to exclusive attack at  the a position was 
realized irrespective of the substrates and reagents (eq 1) 
(Table I). 

It is clear from Table I that the allylic aluminum “ate” 
complexes 3 possess a wide applicability for control of the 
regiochemistry. Unfortunately, n-butyl iodide does not 
react with 3; the halide is limited to allylic or benzylic 
types. The high regioselectivity and convenient workup 
process6 enhance the usefulness of this procedure. Use of 

(3) Yamamoto, Y.; Maruyama, K. J. Am. Chem. SOC. 1978,100,6282. 
(4) Yamamoto, Y.; Yatagai, H.; Maruyama, K. J .  Chem. Soc., Chem. 

(5) Negishi, E. J .  Organomet. Chem. 1976, 108, 281. 
Commun. 1979, 157. 
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decreased amounts of Et3A1 (l/* or 2 / 3  equiv) caused a 
marked decrease of the regioselectivity, and use of excess 
amounts of the additive did not exert any significant in- 
fluence upon the reaction c o u r ~ e . ~  Furthermore, the 
products arising from the transfer of the ethyl group were 
not detected. Although we do not have as yet definite 
evidence for the structure of 3 and a clear understanding 
of the mechanism, the present development undoubtedly 
provides a new methodology in the field of allyl carbanion 
chemistry and it has predictive value. We are currently 
extending this method to other heterosubstituted allyl 
carbanions. 

The preparation of 3-(isopropylthio)-4-hydroxy-1,5- 
heptadiene is representative. To a solution of allyl iso- 
propyl sulfide (1 mmol, 0.13 mL) in dry ether (3 mL) was 
added sec-butyllithiurn in pentane (1.04 M, 1 mmol) at  -78 
“C under N2. After 30 min at  -35 to -40 O C ,  the solution 
wa4 again cooled to --78 “C. Addition of Et3Al (15% in 
hexane, 1 mmol) caused the formation of a white precip- 
itate. After a few minutes, crotonaldehyde (- 1 mmol, 90 
pL) was slowly added;, and the mixture (pale yellow) was 
allowed to warin slowly to room temperature ( 2  h). The 
reaction mixture was cooled by an ice bath and a mixture 
of MeOH-H,O was slowly added to destroy Et3A1. The 
organic layer was separated, dried, and condensed. Dis- 
tillation through a Kugelrohr apparatus gave the desired 
product: 0.143 g, 7 7 % ;  bp 110-114 “C (2 mmHg).* 

___ 
(6) The oxidation by H20,-NaOH in the reaction of boron “ate” com- 

plexes frequently produce:g undesirable byproducts. 
(7) The chemistry of organoaluminum “ate” complexes has not yet 

been studied as extensivelry as that of boron “ate” complexes; Tochter- 
mann, W. Angeu.. Chom., Int. Ed .  Engl. 1966, 5, 351. 

(8) GLC analysis of the reaction mixture before distillation revealed 
an n : y  ratio of 94:fi. 
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